If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x-98=0
a = 1; b = -18; c = -98;
Δ = b2-4ac
Δ = -182-4·1·(-98)
Δ = 716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{716}=\sqrt{4*179}=\sqrt{4}*\sqrt{179}=2\sqrt{179}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{179}}{2*1}=\frac{18-2\sqrt{179}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{179}}{2*1}=\frac{18+2\sqrt{179}}{2} $
| x2+18x+81=0 | | 5(n-83)=45 | | 150-15p=5p-30 | | 8(x-6)=2(-4+8x) | | y/8-8/y=0 | | 18x^2−60x+50=0 | | 9(y+24)=621 | | 3(t-4)+t=-4 | | 19n-2=397 | | -v+29=271 | | -12m-8=104 | | g+278/21=27 | | 2=4-1/x | | 21-x=261 | | 6=4-1/x | | -28=2(u-4) | | 6=4-(1/x) | | 6(8k-7)=-7(6+k) | | 2x+15(-1/5)=1 | | 4z2-196=0 | | 8x=82-8 | | 2m+-71/2=1 | | -6(y-85)=-66 | | t/6+13=18 | | 4(y-4)=8y-24 | | 5x+3(4x-5)=-32 | | y+7-3y+17=180 | | w/6-28=-24 | | 4(y-4=8y-24 | | 3=m/5-2 | | x-2(x+5)=-2 | | c-36/7=9 |